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ABSTRACT :

Both in industrial close-to-production quality cwit and in laboratory metrology, measuring optical
components and systems with high precision andugso (typically lambda/100 ptv) is currently aekied by phase-
shifting interferometry devices. The main drawbacksuch devices compared to static fringes syst@ria a higher
cost, and a greater the sensitivity to the enviremimboth vibration and air turbulence; the laltecomes unacceptable
for large components and large cavity interferomsete

Conversely, static fringes metrology usually lapkscision and resolution. Particularly, the lateeslolution is
an issue, due to the sampling theorem. This pamevshow a linear prediction of a random functioritifva Bayesian
approach) makes it possible to tackle a lambdaf&80lution for the estimated wavefront, being thathamatical
expectation of the prediction, i.e. the most prdbdbrm with respect to the fringe data. Incidelytathe prediction
increases robustness by detecting and correctimigaati fringe data with a high reliability.

Furthermore, a Monte-Carlo simulation performed the whole conditional probability density of the
wavefront, provides a stochastic sub-fringe-spaaibtgrpolation. As a result, confidence intervals &ny parameter of
interest (such as ptv, rms, ptv of slopes...) caredtimated over the whole aperture, which is naxgldwide. These
algorithms have also been adapted to wavefrontnsgnaction from gradient data for Shack-Hartmand for moiré
devices.

Examples of implementing these algorithms to indaistoftware will be shown.

Keywords: Interferometry, Static fringes, Linear predictidonte-Carlo simulation, Confidence intervals.

1 INTRODUCTION

The metrology of wavefronts is crucial for Opticahdineering, particularly for testing the opticalfsices of
components (lenses, mirrors, prisms...) Usual $logp measurement devices, most of which were desidy pioneer
XIX™ century researches, are based on various physheslomena: Interferometers, Foucault, moiré... Agnitrem,
for either technical or historical reasons, Fizead Twyman-Green interferometers are widely useddaAesult, the
ISO standard 10110-5 entitled "Optics and opticatruments. Preparation of drawings for opticalmaets and
systems" introduces Part 5 "Surface form tolersht a note: "The terminology of interferometryused for the
specification of tolerances, and in particular floe units in which the tolerances are to be sptifi..] Other, non-
interferometric methods may be used if the resrksconverted to the units specified here."

Besides, a dramatic increase in precision is deethrid high-technology components, for space, astnyn
observation, telecommunications, defence... Both polishing and the measuring processes must keep u
New concepts such as MRF polishing follow this atioh, needing an increased metrology precisioaséhtly, only
high-quality phase-shifting interferometers seemetich the mythic "lambda/100 ptv".
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However, the drawbacks of phase-shifting devicespared to static fringes systems lie in a gre&esensitivity
to the environment, both vibration and air turbekeh; the latter becomes unacceptable for large coemisrand large
cavity interferometers. Furthermore, high qualityape-shifting interferometers are more expensiad, difficult to
afford for many small or medium-size firms, partanly when the investment goes along with that afeav CNC
polishing machine.

The goal of this paper is to show how a careful iemagd signal processing can reach this "lambdafit@0
resolution and precision from static fringes inteoigrams, provided that the interferometer is indgoondition , and
operated in a suitable experimental environment.

As stressed by the 2005 edition of the referenotetierogram analysis for optical testing" by Malex et al?,
reconstructing the phase from fringe data is astep in the fringe analysis process. Accordindhie teview, two main
types of phase reconstruction are currently udweel:stmplest one to implement is fitting the dataabgrojection on
a vector space of functions (typically polynomiaach as Zernike, or Legendre). This method is knaashbw poor
accuracy, since the least squares fit is not @npotation: the reconstructed phase does not rbectiata.

The other main class of phase detection techniquiéisted by Takedd, is based on a harmonic analysis phase
unwrapping either for one single fringe patterntivFourier Transform), or for a set of phase stifteterferograms.
Numerous papers describe algorithms for corredome limitations of FFT phase unwrapping technigseassitivity
to noise, difficulty in dealing with closed fringgsr strongly deformed wavefronts.

The spatial (x,y) resolution is half the fringe spac As regards z resolution, Burnett ef abnsider that "As multiple
images are used the resolution of the phase intwmas an order of magnitude higher than that keé Fourier
transform technique, images being resolved typical to 108 of a wavelength”; in other words, a single fringe
pattern can yield only a lambda/10 resolution.

In short, either the FFT based techniques are sifpt show low robustness, or they can be powaeitftihe price of
complex optimisation algorithms. Using phase-ahdftidevices helps, with an additive cost as well.rédoer,
unwrapping closed fringes due to strongly deformvestefronts is feasible, yet not straightforward.

Our approach, though classic in Signal Processirig novel in the field of wavefront interferometspftware:
we implement an estimation of the wavefront proligbdensity function, conditioned by the fringetdaThere are
many advantages: the reconstructed wavefront i8#st Linear Predictor (i.e. the most probable paéation of the
data); being linear, the method is highly robustagse; it provides a detection and a correctioabmrrant data; it deals
with surface form errors ranging from several wangths to a few nanometers; it provides confidénmiszvals for the
wavefront and for any parameter of interest estahditom the wavefront; the algorithms are fairippie.

This paper will first recall the Bayesian predictiarethod, showing a brief example. The role of \gnam
estimation will be stressed. Using the predictedifpin Monte-Carlo simulation will yield robust temation and
confidence intervals of any given parameter ofrege We will conclude on the industrial intereststatic fringes
interferometry.

2 LINEAR PREDICTION OF A RANDOM SIGNAL: CLASSIC RESULTS

1.1. General issue: performing the best estimation of a continuous process from discr ete data

From a simple geometrical point of view, the peakl aalley lines of an interferometric fringe pattgfFig. 1, left)
are level curves of the wavefront under test, asthe topography on a mafig 1, centre). Thus the wavefront is
clearly oversampled along the lines, and undersagnptross thenfig. 1, right). .

Fig.1 Thefringespeaksand valleysarelevel curvesof the wavefront.
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The main issue of the phase reconstruction is shayethost metrology processes: estimating a contiaufanction
from discrete dat& In terms of probability, this issue can be expegsas follows: Callingf’ the wavefront function of

a 2-dimensional spatial variab¥e, sampled at site(:ﬁ) . For any X , what is the information oN(X)conditioned

by the daté((S), denoted a§((X) |Y(S) ? What estimations can be done for any paramétaterest such as

a Peak-to-Valley (PV), a Root Mean Square (RMS},?efA connected issue is related to an optimal runamnd
location of the data (controlled by the fringe spgrand the subsequent precision on the estimétign2).

Model
YIXS ) )| prRus v 2
Uncertainty

Y(S:)
Yis) Yis

¥ (S0)

So A s, S,

Best number and location
XE (S) t for sites (S) ? p

Fig.2  Main issue of estimating continuous processes fimtrete data: finding the conditional p.d.f.
The following section describes a classic answéhitissue: the linear (Bayesian) prediction of Y.
1.2. Linear prediction based on the autocorrelation function (a.c.f.)

In this paper, a material surface is considered particular realisation of a random functi?fr(a), X), defined on

a subsetD 0 R ? for the spatial variablX, and on a fieldQ of eventsw.

FunctionY is assumed to be the sum of a deterministic fundiib (usually referred to as "model") and a random
functionZ with zero mean: for alKin D and allwin Q, Y (a), X) =M (X) +7Z (a), X)

The simplest choice for the deterministi¢ is the class of models linear in a parameéterM , (X) =f (X) a
where f (X) = ( fl(X),... , f ( X)) O R* is the general form of the model (Eq. 1)

and a = (al,...,ak )T OR* is a vector parameter of the same dimension. IBehf((a), X)simply asY (X)
and Z (a), X)asZ (X) , understating the event varialfi@

In Eqg.1 the choice for the dimensi&rof the model and the form of the component funrtsti()fi) is a priorbased on
the user's knowledge on the physical phenomenatimate. For a wavefront, th(efi ) are typically a set of Zernike
polynomials, andk is chosen as a low order. The wavefront is samabditesSZ(S,...,&)D D", and the

measured data i¥ (S) = (Y (S_) Y (&))T OR". Let X =(X1,...,Xp) be a set of sites where we want to

estimateZ. For our application, the data consists of sampiades peaks or valleys. At that stage, we assilnaiethe
reconstruction process has already extracted frenmterferogram a 3-dimensional dataset.
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In a Bayesian approach, the goal is to estimatgaim¢ probability density function (p.d.f.) of thendom
vector Y(X) conditioned by the known dat¥(S), denoted as(Y(X)|Y(S)). The conditional expectation

E[Y (X) Y (S)] will stand for the wavefront reconstruction. Itdptimal, being the "most probable position” of
Y (X) with respect to the daté (S) :

A usual choice is to restrain to a linear caseassumingZ to be Gaussian, since the Gaussian subset of the
random functions forms a vector space. The chofce rero mearZ prompts to estimate the best moddl, that

yields a minimum variance Z. Under these assumptithres conditional expectatioE[Z(X) | Z(S)] is the Best

Linear Unbiased Predictor (BLUP). This method, fiteveloped by Matherdhand aimed at geostatistics applications,
is known as Kriging.

Since it has zero mean, the statistical propedfigsare entirely defined by itd0? . R covariance function
COV(Xl, Xz) =E [Z (Xl) VA (Xz)]
Estimating M b and Z from one single dataset requires other thgses Z is supposed to be stationary, isotropic and
ergodic. Then the covarian(@OV(Xl, X2) depends only 0|ﬂ X, - X2|| ; it can be written agCor (”Xl - X2||) .
The R* . IR function Cor is called autocorrelation function (a.c.f.)&f Cor (O) is the surface variance, usually

denoted axr?.
The Bayesian prediction appliedZoyields its first two conditional moments, whichtiegly defines the Gaussiah:

E.[Z(X)]=CxCs.Z(S)

_ (Eq. 2)
V,[Z(X)]=Cy ~CysCxCxx
with the following covariance matrice€gg = (Cor (Si 'S, ) )(. o] Cu = (Cor (X i X ) )(_ Yo
i, - n|? i - p|2
CXS = (Cor (X i ’Sj ) )(i,j)D[1-~- p]><[l~--n] CSX = CXTS (EQ- 3)
The precicted residual B(S) = Y(S) ~ (S, with T () = ( (8-, ()" = (1, () s s

Fig. 3illustrates a 2D prediction of a functidfof a single variableX. The predicted signal (thin line), unknown by the
predictive algorithm, is superimposed to the préaiic

+ 30 Cenfidence intervals

E(X) =E[Y(X) | Y(S)]

Y | Y(S)

Fig.3 Example of a 2D profile predicted from a sample.
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Another 3D example is a function predicted overjaase with data defined at the points of a [0.@8]d.
The conditional expectation is an actual interpofati The expectationE, [Y(S)] of Y at site § is equal to

the knownY(S) : the reconstructed phase does reach the Higtad(left). With a decreasing a.c.f., the conditional

varianceV, [Y ( X )] is minimum for X [J (S) and increases aé gets away from the closest sifig( 4, right).
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Fig.4 Example of a surface predicted from 16 data oruargggrid. Left: expectation. Right: variance

1.3. Estimating the model and the a.c.f. from the data.

The kriging® method estimates the parameethat defines the modd , in order to minimise the prediction

variance, and proceeds togkobal prediction. When the surface a.c.f. is unknown, has to be estimated through a
maximum likelihood optimisation, which involves avariance matrix of the order of the number of ddfa Besides,
as discussed in Section 1.5, we perforhocal prediction, at a single spot X, conditioned byew fsurrounding data.

But the predictedf must be continuous: estimating local models woeddilt in a patchwork of surface pieces.

Hence our approach is slightly different from knigi Furthermore, according to some autyrsptimising
the model in not crucial: being linear, the predictturns out to be fairly robust to non-statiohariAs a consequence,
in our case, a least squares best fit of low-oraenike over all the fringe data provides quitesfatitory predictions.

In the next section, we will focus on the predistiof Z(X) =Y (X) — f(X).a, where f is the set of low-order
Zernike we chose as a basis of models, anid the vector of the least squares coefficientsseBaon the assumed
ergodicity of Z, and due to the high number of data, a naive thoefficient way of estimating the a.c.f. is

computing the spatial average C;)r z (T) = <Z (Xl).Z (X2)>HX Cxg|=T (Eq.4)
1 2|~

then fitting a given function, typically Cor 2 (T) = a.e‘b-T
1.4. Linear prediction based on thevariogram : predicting the incrementsof Z.

A robust approach applies linear prediction toitieeements of Z : Define the functions of the increments of Z :

oZ: D> - R _ _ ,
. OZ(X,T) is the increment of at X with step lengthr.
X.r) - Z(X+7)-Z(X)

Assume thatdZ is Gaussian, stationary and ergodic. Now constuetvariance function" or " variograth" of Z:
Var:D - R

r - E[ozK ]|
reduced to @R - & function, related to the a.c.f. bytar (T) = 2 (Cor (0)-Cor (T)) for T OR*. (a5

In the stationary and isotropic case, the vasdoygis stationary and
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Notice that Var (0) = 0: the variance of increments with null step lenigthull.

Choose an origin§, and denote the incremea€(S,,7,) and 0Z(S,,r,)as 0,and J,. The covariance of

0,and 0, is the expectation of their produ&ov (9,,0,) = E[Jl.é_z} and can be expressed in terms of
variogram:  Cov(d,,d,) =1/2. (Var (”51”) +Var (”52”) ~Var (”51— 52”)) . (Eq. 6)

Let S= (Sb, ,Sn) be a set of n+1 sites &, 0Z(S) = (O'Z(S) i) the known increments & with origin

i0f--n]

S, and step Iengtr(:Si - SO) = (Xl,...,Xp) a set ofp sites where we want to estimafe Instead of

i[[l..n]' X

predicting Z(X), we can predict the incrementdZ(X)with origin S, and step Iengtl'(sXj - SO)'E[l "
jda..

conditioned by the known da®Z (S) . The prediction equations are identical to Equst jeplacingZ by dZ and Cor

by Cov.

The covariance matrices coefficients can be expdegsth the variogram :

Cov(s,,S,) =1/ 2.(Var (Isi-s)+Var (s, - ) -Var (|s,-s ||)) and so forth. (Eq. 7)

Estimating the variogram from a large dataset @alhpute the spatial average

var (1)=((z (%) -2 (%))

A

| | then fit a given function, typically/ar (T) = C.(l— e‘d-T) (Eq. 8)
Xg= Xo| =T

1.5. Comparing predictive methods: Z versus &Z. Robustness.

When bothZ and dZ conform to the hypotheses of being stationary iaatfopic, both predictive methods
yield identical results. However, real life datasisldom stationary. First, the stationarityZoimplies that o©Z ,
whereasdZ may be stationary although is not. Secondly, when estimating either the a@of. or the variogram Var
from the data, sophisticated methods such as mamifikelihood turn out to be unstable. In our apation to fringe
analysis, we take advantage of the high numberatf dy expressingor (T) or Var (T) as a spatial average (as in
Eq.4 or 8) , under the hypothesis of ergodicitynastioned above.

The main difference between both methods is dubddact that we perform lacal prediction, using only a
few surrounding data. This choice proceeds fronofidern of the data covariance matrfxgq that has to be inverted.

This matrix tends to be ill conditioned as its ardises, which just ruins the prediction. Rememthett the whole
dataset has typically one thousand points : gathexil the data in one single covariance matrixasrelevant. Now, as

regards a local prediction, note that the varioghams a fixed value : by definitionVar (0) = O . If non-stationarity
disturbs the estimation of Var, its values for sipgths 7 in the neighbourhood of 0 will be less influendbdt its
values for largd. In contrastCor (0) is equal too?, the surface variance. Indeed, non-stationadtjljoimpacts the
estimation of this parameter.

Predicting the incrementdZ instead ofZ is rather unusual in the field of applied Signabd@ssing such as
geostatistics. The idea was first applied by Manméf for interpolating fractals, whose variograms falla power

law Var (T) =T>" . Due to the self-similarity of those random preess their variance is not defined, so that oy th

increments can be predicted. The fact that engimgaurfaces (even polished ones) are fractal regreometric scale,
is another incentive for choosing this approach.

As a conclusion for this section, predictidgwith the a.c.f. ordZ with the variogram are equivalent if the
signal is stationary, but if not, predictil is more robust.
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3 DETECTING AND CORRECTING ABERRANT DATA
Before performing the phase reconstruction, thdiptige algorithm can be applied to the fringe peakd valleys
data itself, in order to detect and discard ab¢mdata: The p.d.fY(Sj ) |Y(S¢j ) of each data conditioned by some

of its closest neighbours is computed, providingfictence intervalsHg. 5). If Y(Sj) lies out of the confidence

interval with a given confidence rate, the datdisearded. It is not necessary to replace it bgatsditional expectation,
since this operation would add no information. phase prediction will just compensate for this imigsiata.

Surrounding data Y(S . ; 2 Data under test Y(S;)
1

AR

t uc
confidence
interval

E[Y(S) 1 Y(S, )]

Fig.5 Testing each data vs its confidence interval céoid by the surrounding data.

The following example shows a spot on an interfeangresulting in a crater on a bright fringe. Tleals of the crater
are detected as fringe data. If not correcteddabloenp shows up on the phas&(6). The aberrant data algorithm
described above wipes off the defe@ty(7). This algorithm makes the phase reconstructighlizirobust to noise.

Fig.6 Typical example of aberrant fringe data on an fetegram.
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Fig. 7  Detection and rejection of the aberrant data.
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4 REACHING LAMBDA/100 RESOLUTION

Indeed, the aberrant data correction algorithmshdhgmling with very noisy interferograms. Howevewe want

to tackle high precision and resolution, we cetyaneed high quality data. Fig. (&ft) is a static fringes interferogram
of a part, measured on a carefully refurbishedfiatemeter fitted with a gorgeous reference mirror.

After predicting the phase and subtracting itst fiégrnike components, the residuals on the 2D pimaae show
evidence of the polishing process, namely MagneteeRlgical Finishing with its typical revolution grees Fig.

8, centrd. Note the scale on the 3D graptig( 8 right) : the central peak is about 7 nm high, Aé100 ptv. This value

does not stand for the measuring system resolutiois, the amplitude of the detected signal. Theohgtion is
necessarily an order of magnitude smaller, actuedlyometric.

When reaching this level of accuracy, it is necgssa gather the best experimental conditions @i kir
turbulence and solid vibrations, temperature stgbil The need for tilting the wavefront is knowmncreate aberrations,
mainly astigmatism, which may be solved by avergdimo wavefronts with opposite tilts.

10.00 nm

\ﬁ\-“‘\‘g

A,
‘t‘s\\\\\\‘st\“\\‘}‘.““‘ it
y: “"“:\\‘3“‘“ =i -10.00

Fig.8 Reconstructing the phase from a single static farigeerferogram:A/100 details are visible .

5 ESTIMATING CONFIDENCE INTERVALSFOR PARAMETERS OF INTEREST

Whatever accurate the reconstructed phase, theunmegaprocess will miss its goal if the parameteirsnterest,
bounded by industrial specifications, are not adhefestimated. A current way of estimating a PVaRMS is to
compute those of the reconstructed phase. Howgwvevijded we consider the phase only as estimatiom fan
underlying random function, we need to considewa$i any parameter extracted from the wavefronaasndom
variable. The expectation of the phase PYidsthe PV of the phase expectation. A specificatiochsas "The mirror
PV should be less than x nm" needs to be rephiiasgdchastic terms: "According to the data acqua the mirror,
what is the probability that its actual PV be geedhan x nm ? " Or in other words, "What is trek riwhose estimation
will help the user make a decision on the partéptor discard)?"

When a p.d.f. is available, it is common to perfaionte-Carlo simulatioff with any number of random trials,
consistent with this p.d.f. Namely, each trial vidé one of the likely surfaces, reaching the datd, whose variogram
is that of the prediction. For example, we canrasttfrom each trial # k PV, = max Y, (X) - )[giDn Y, K )and

build a histogram of these PV, for thousands dfstrahe histogram converges towards the p.d.fhefPV Fig. 9).

Random trials consistent Histogram =

with the predicted p.d.f. 3 Estimation of
1 of Y(X)| ¥(S) the PV p.d.f.

PV#1

PV#2

Fig.9 Estimating the p.d.f. of the PV by Monte-Carlo siatidn performed on the predicted p.d.f. of Y.
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The next step uses this histogram to estimateiiketimat the part PV be greater than a given sjpatién
PVmax €ig. 10.

Estimated PV p.d.f

Confidence =
Probability (PV<PVmax)

Risk =
Probability (PV>PVmax)

¥

PV max

Fig. 10 Using the estimated PV p.d.f. for risk evaluation :
What is the probability for the PV to be out ofei@nce ?.

Note that the z precision of these estimates reliethe fringe spacing : the smaller the inter-distance, the
smaller the conditional variance, the better thprecision. (Other approaches for extracting the efrant RMS
variance -and FTM in a forthcoming paper- from thedicted p.d.f. are described'f)

But the lateral (x,y) resolution of the phase retnrction is a different issue : For example, sdaser
applications specify a PV of slopes averaged omearaad mm in diameter. Requiring a fringe spacing smahand,
or even a pixel resolution, seems a straightforvided. In fact, the prediction takes into accobetéxpected variations
of the wavefront at any step length, even tendimgatds zero. As a result, the lateral (x,y) resofutof these
estimations is not restricted by the sampling tesor since the statistical properties of the pitedi¢unction are held in
the variogram, we do perform an actual statisscdl-fringe-spacing interpolation between the data.

Before concluding this paper, let us mention thaseé algorithms have also been adapted to wavefoahstruction
from gradient data for Shack-Hartmann, moiré deyjioe shearing interferometers. A space and timeali prediction
has been applied to optimising dynamic Adaptivei@®ditted with a Shack-Hartmann sensor

6 CONCLUSION

Static fringes interferometry is a traditional asithple technique for measuring wavefront defornmetio
Industrial shops are fitted with numerous interfeeters, most of which having beautiful referencerons. Urged by
an ever increasing need in optical parts precisioa,metrology of wavefronts has turned to phaskislp devices,
believed be the only solution to grant the myttéribda/100 resolution”.

Yet, a painstaking image and signal processing midtkpossible to extract a maximum information from

a single interferogram. The linear (Bayesian) miol of the wavefront provides an optimal recamstion:
the expectation is the "most probable surface" wapect to the fringe data, with a "vertical" galaition close to that
of a phase-shifting device. Applying a predictianthe data itself increases robustness by deteaetnuycorrecting
aberrant fringe data with a high reliability. Fuethore, by means of Monte-Carlo simulations, theletpredicted
p.d.f. yields confidence intervals of any parameteinterest, which is novel in this field. As reda estimating those
parameters, the stochastic interpolation betweenfringe data provides a precision close to thapluse-shifting,
coupled with an effective "lateral" resolution (xgmaller than the fringe spacing.

As a conclusion, the method described in this paparhelp upgrading interferometers at a signifigdower

cost than buying a new system. Besides, the meglyotd large components for which air turbulence esalphase
shifting unstable, can also be enhanced by softvased on linear prediction algorithids

* k%
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