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ABSTRACT :
Both in industrial close-to-production quality control and in laboratory metrology, measuring optical

components and systems with high precision and resolution (typically lambda/100 ptv) is currently achieved by phase-
shifting interferometry devices. The main drawbacks of such devices compared to static fringes systems lie in a higher
cost, and a greater the sensitivity to the environment, both vibration and air turbulence; the latter becomes unacceptable
for large components and large cavity interferometers.

Conversely, static fringes metrology usually lacks precision and resolution. Particularly, the lateral resolution is
an issue, due to the sampling theorem. This paper shows how a linear prediction of a random function (with a Bayesian
approach) makes it possible to tackle a lambda/100 resolution for the estimated wavefront, being the mathematical
expectation of the prediction, i.e. the most probable form with respect to the fringe data. Incidentally, the prediction
increases robustness by detecting and correcting aberrant fringe data with a high reliability.

Furthermore, a Monte-Carlo simulation performed on the whole conditional probability density of the
wavefront, provides a stochastic sub-fringe-spacing interpolation. As a result, confidence intervals for any parameter of
interest (such as ptv, rms, ptv of slopes...) can be estimated over the whole aperture, which is novel worldwide. These
algorithms have also been adapted to wavefront reconstruction from gradient data for Shack-Hartmann and for moiré
devices.
Examples of implementing these algorithms to industrial software will be shown.
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1 INTRODUCTION

The metrology of wavefronts is crucial for Optical Engineering, particularly for testing the optical surfaces of
components (lenses, mirrors, prisms...) Usual shop floor measurement devices, most of which were designed by pioneer
XIX th century researches, are based on various physical phenomena: Interferometers, Foucault, moiré... Among them,
for either technical or historical reasons, Fizeau and Twyman-Green interferometers are widely used. As a result, the
ISO standard 10110-5 entitled "Optics and optical instruments. Preparation of drawings for optical elements and
systems" introduces Part 5  "Surface form tolerances" by a note: "The terminology of interferometry is used for the
specification of tolerances, and in particular for the units in which the tolerances are to be specified [...] Other, non-
interferometric methods may be used if the results are converted to the units specified here."

Besides, a dramatic increase in precision is demanded to high-technology components, for space, astronomy,
observation, telecommunications, defence... Both the polishing and the measuring processes must keep up.
New concepts such as MRF polishing follow this evolution, needing an increased metrology precision. Presently, only
high-quality phase-shifting interferometers seem to reach the mythic  "lambda/100 ptv".
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However, the drawbacks of phase-shifting devices compared to static fringes systems lie in a greater the sensitivity
to the environment, both vibration and air turbulence 1 ; the latter becomes unacceptable for large components and large
cavity interferometers. Furthermore, high quality phase-shifting interferometers are more expensive, and difficult to
afford for many small or medium-size firms, particularly when the investment goes along with that of a new CNC
polishing machine.

The goal of this paper is to show how a careful image and signal processing can reach this "lambda/100 ptv"
resolution and precision from static fringes interferograms, provided that the interferometer is in good condition , and
operated in a suitable experimental environment.

As stressed by the 2005 edition of the reference "Interferogram analysis for optical testing" by Malacara et al. 2,
reconstructing the phase from fringe data is a key step in the fringe analysis process. According to this review, two main
types of phase reconstruction are currently used: the simplest one to implement is fitting the data by a projection on
a vector space of functions (typically polynomials, such as Zernike, or Legendre). This method is known to show poor
accuracy, since the least squares fit is not an interpolation: the reconstructed phase does not reach the data.

The other main class of phase detection techniques, initiated by Takeda 3, is based on a harmonic analysis phase
unwrapping either for one single fringe pattern (with Fourier Transform), or for a set of phase shifted interferograms 4.
Numerous papers describe algorithms for correcting some limitations of FFT phase unwrapping techniques: sensitivity
to noise, difficulty in dealing with closed fringes 5 or strongly deformed wavefronts.
The spatial (x,y) resolution is half the fringe spacing. As regards z resolution, Burnett et al.6 consider that "As multiple
images are used the resolution of the phase information is an order of magnitude higher than that of the Fourier
transform technique, images being resolved typically up to 100th of a wavelength"; in other words, a single fringe
pattern can yield only a lambda/10 resolution.
In short, either the FFT based techniques are simple but show low robustness, or they can be powerful at the price of
complex optimisation algorithms. Using phase-shifting devices helps, with an additive cost as well. Moreover,
unwrapping closed fringes due to strongly deformed wavefronts is feasible, yet not straightforward.

Our approach, though classic in Signal Processing 7, is novel in the field of wavefront interferometry software:
we implement an estimation of the wavefront probability density function, conditioned by the fringe data. There are
many advantages: the reconstructed wavefront is the Best Linear Predictor (i.e. the most probable interpolation of the
data); being linear, the method is highly robust to noise; it provides a detection and a correction of aberrant data; it deals
with surface form errors ranging from several wavelengths to a few nanometers; it provides confidence intervals for the
wavefront and for any parameter of interest estimated from the wavefront; the algorithms are fairly simple.

This paper will first recall the Bayesian prediction method, showing a brief example. The role of variogram
estimation will be stressed. Using the predicted p.d.f. in Monte-Carlo simulation will yield robust estimation and
confidence intervals of any given parameter of interest. We will conclude on the industrial interest of static fringes
interferometry.

2 LINEAR PREDICTION OF A RANDOM SIGNAL: CLASSIC RESULTS

1.1. General issue : performing the best estimation of a continuous process from discrete data
From a simple geometrical point of view, the peak and valley lines of an interferometric fringe pattern (Fig. 1, left)
are level curves of the wavefront under test, just as the topography on a map (Fig. 1, centre). Thus the wavefront is
clearly oversampled along the lines, and undersampled across them (Fig. 1, right).  .

  

Fig. 1 The fringes peaks and valleys are level curves of the wavefront.
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The main issue of the phase reconstruction is shared by most metrology processes: estimating a continuous function
from discrete data 7. In terms of probability, this issue can be expressed as follows: Calling Y the wavefront function of

a 2-dimensional spatial variableX , sampled at sites( )iS . For any X , what is the information on ( )Y X conditioned

by the data ( )Y S , denoted as ( ) ( )|Y X Y S  ? What estimations can be done for any parameter of interest such as

a Peak-to-Valley (PV), a Root Mean Square (RMS), etc.? A connected issue is related to an optimal number and
location of the data (controlled by the fringe spacing) and the subsequent precision on the estimation (Fig. 2).

Fig. 2 Main issue of estimating continuous processes from discrete data: finding the conditional p.d.f.

The following section describes a classic answer to this issue: the linear (Bayesian) prediction of Y.

1.2. Linear prediction based on the autocorrelation function (a.c.f.)

In this paper, a material surface is considered as a particular realisation of a random function ( ),Y Xω , defined on

a subset 2D ⊂R  for the spatial variable X, and on a field Ω  of events ω.

Function Y is assumed to be the sum of a deterministic function M (usually referred to as "model") and a random

function Z with zero mean: for all X in D  and all ω in Ω , ( ) ( ) ( ), ,Y X M X Z Xω ω= +

The simplest choice for the deterministic M  is the class of models linear in a parameter α : ( ) ( ).M X f Xα α=

where ( ) ( ) ( )( )1 , , k
kf X f X f X= ∈… R  is the general form of the model (Eq. 1)

and ( )1, ,
T k

kα α α= ∈… R   is a vector parameter of the same dimension. Denote ( ),Y Xω simply as ( )Y X

and  ( ),Z Xω as ( )Z X , understating the event variable ω.

In Eq.1 the choice for the dimension k of the model and the form of the component functions ( )if  is a prior based on

the user's knowledge on the physical phenomena to estimate. For a wavefront, the ( )if are typically a set of Zernike

polynomials, and k is chosen as a low order. The wavefront is sampled at sites ( )1, , n
nS S S D= ∈… , and the

measured data is ( ) ( ) ( )( )1 , ,
T n

nY S Y S Y S= ∈… R .  Let ( )1,..., pX X X= be a set of sites where we want to

estimate Z. For our application, the data consists of sampled fringes peaks or valleys. At that stage, we assume that the
reconstruction process has already extracted from the interferogram a 3-dimensional dataset.
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In a Bayesian approach, the goal is to estimate the joint probability density function (p.d.f.) of the random

vector Y(X) conditioned by the known data Y(S), denoted as ( ) ( )( )|Y X Y S . The conditional expectation

( ) ( )|E Y X Y S    will stand for the wavefront reconstruction. It is optimal, being the "most probable position" of

( )Y X  with respect to the data ( )Y S .

A usual choice is to restrain to a linear case, by assuming Z to be Gaussian, since the Gaussian subset of the

random functions forms a vector space. The choice of a zero mean Z prompts to estimate the best model Mα  that

yields a minimum variance Z. Under these assumptions, the conditional expectation ( ) ( )|E Z X Z S    is the Best

Linear Unbiased Predictor (BLUP). This method, first developed by Matheron 8 and aimed at geostatistics applications,
is known as Kriging 9.

Since it has zero mean, the statistical properties of Z are entirely defined by its 2
→R R  covariance function

( ) ( ) ( )1 2 1 2, .Cov X X Z X Z XE=   

Estimating pM  and Z from one single  dataset requires other hypotheses : Z is supposed to be stationary, isotropic and

ergodic. Then the covariance ( )1 2,Cov X X  depends only on 1 2X X−  ; it can be written as ( )1 2Cor X X− .

The +
→R R  function Cor  is called autocorrelation function (a.c.f.) of Z. ( )0Cor  is the surface variance, usually

denoted as ²σ .

The Bayesian prediction applied to Z yields its first two conditional moments, which entirely defines the Gaussian Z :

( )
( )

1

1

. . ( )

. .

c XS SS

c XX XS SS SX

Z X C C Z S

Z X C C C C

E

V

−

−

=   


= −    

(Eq. 2)

with the following covariance matrices : ( )( )( ) [ ], 1 ²
,S S i j

i j n
C Cor S S

∈
=

�
( )( )( ) [ ], 1 ²

,XX i j
i j p

C Cor X X
∈

=
�

( )( )( ) [ ] [ ], 1 1
,XS i j

i j p n
C Cor X S

∈ ×
=

� �

T
S X X SC C=  (Eq. 3)

 The predicted residual is( ) ( ) ( ).Z S Y S f S α= − , with ( ) ( )( )( ) [ ] [ ]1 , 1 1
( ) ( ), , ( )

T

n j i i j n k
f S f S f S f S

∈ ×
= =

� �
…

Fig. 3 illustrates a 2D prediction of a function Y of a single variable X. The predicted signal (thin line), unknown by the
predictive algorithm, is superimposed to the prediction.

Fig. 3 Example of a 2D profile predicted from a sample.
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Another 3D example is a function predicted over a square with data defined at the points of a [0..3]² grid.

The conditional expectation is an actual interpolation : The expectation ( )c iY SE     of Y at site iS  is equal to

the known ( )iY S  : the reconstructed phase does reach the data (Fig. 4, left).  With a decreasing a.c.f.,  the conditional

variance ( )cV Y X   is minimum for  ( )X S∈  and increases as X gets away from the closest site (Fig. 4, right).

    
Fig. 4 Example of a surface predicted from 16 data on a square grid. Left: expectation. Right: variance

1.3. Estimating the model and the a.c.f. from the data.

The kriging 9 method estimates the parameterα that defines the modelMα  in order to minimise the prediction

variance, and proceeds to a global prediction. When the surface a.c.f. is unknown, α  has to be estimated through a
maximum likelihood optimisation, which involves a covariance matrix of the order of the number of data 7.10  Besides,
as discussed in Section 1.5, we perform a local prediction, at a single spot X, conditioned by a few surrounding data.
But the predicted Y must be continuous: estimating local models would result in a patchwork of surface pieces.

Hence our approach is slightly different from kriging. Furthermore, according to some authors 11, optimising
the model in not crucial: being linear, the prediction turns out to be fairly robust to non-stationarity. As a consequence,
in our case, a least squares best fit of low-order Zernike over all the fringe data provides quite satisfactory predictions.
In the next section, we will focus on the prediction of ( ) ( ) ( ).Z X Y X f X α= − , where f is the set of low-order

Zernike we chose as a basis of models, and α is the vector of the least squares coefficients. Based on the assumed

ergodicity of  Z, and due to the high number of data, a naive though efficient way of estimating the a.c.f. is

computing the spatial average ( ) ( ) ( )
1 2

1 2.Z
X X T

Cor T Z X Z X
− =

=
^

(Eq. 4)

then fitting a given function, typically ( ) ..Z
b TCor T a e−=

^

1.4. Linear prediction based on the variogram : predicting the increments of Z.

A robust approach applies linear prediction to the increments of Z : Define the functions of the increments of Z :
2

 

 :            

    ( , )  ( + ) - ( )

Z D

X Z X Z X

δ
τ τ

→
→

R
. Z( , )Xδ τ  is the increment of Z at X with step length τ.

Assume that Zδ is Gaussian, stationary and ergodic. Now consider the "variance function" or " variogram 12 " of Z:

 2

ar :           

            Z( , )

V D

E Xτ δ τ

+→

 →  

R
.  In the stationary and isotropic case, the variogram is stationary and

reduced to a +
→R R  function, related to the a.c.f. by: ( )( ) 2 (0) ( )Var T Cor Cor T= −  for T +∈� .     (Eq. 5)

ClaraLuna est un logiciel édité par OPTICS-CONCEPT France



Notice that  ( )0 0Var = : the variance of increments with null step length is null.

Choose an origin 0S  and denote the increments 0 1Z(S , )δ τ  and 0 2Z(S , )δ τ as 1δ and 2δ . The covariance of

1δ and 2δ  is the expectation of their product 1 2 1 2( , ) .Cov Eδ δ δ δ =    and can be expressed in terms of

variogram :  ( ) ( ) ( )( )1 2 1 2 1 21/ 2( , ) .Cov Var Var Varδ δ δ δ δ δ= + − − . (Eq. 6)

Let ( )0,..., nS S S= be a set of n+1 sites of D, ( ) [ ]1
( ) ( ) i i n

Z S Z Sδ δ
∈

=
�

 the known increments of Z with origin

0S  and step lengths( ) [ ]0 1..i i n
S S

∈
− , ( )1,..., pX X X= a set of p sites where we want to estimate Z. Instead of

predicting Z(X), we can predict the increments ( )Z Xδ with origin 0S  and step lengths( ) [ ]0 1..j j p
X S

∈
− ,

conditioned by the known data ( )Z Sδ . The prediction equations are identical to Eq.1, just replacing Z by δZ and Cor

by Cov.

The covariance matrices coefficients can be expressed with the variogram :

( ) ( ) ( ) ( )( )0 01/ 2, .i j i j i jCov S S Var S S Var S S Var S S= − + − − − and so forth. (Eq. 7)

Estimating the variogram from a large dataset will compute the spatial average

( ) ( ) ( )( )
1 2

2

1 2
X X T

Var T Z X Z X
− =

= −
^

 then fit a given function, typically ( ) ( ).. 1 d TVar T c e−= −
^

  (Eq. 8)

1.5. Comparing predictive methods : Z versus  δδδδZ. Robustness.

When both Z and Zδ  conform to the hypotheses of being stationary and isotropic, both predictive methods

yield identical results. However, real life data is seldom stationary. First, the stationarity ofZ implies that of Zδ ,

whereas Zδ may be stationary although Z is not. Secondly, when estimating either the a.c.f. Cor or the variogram Var
from the data, sophisticated methods such as maximum likelihood turn out to be unstable. In our application to fringe
analysis, we take advantage of the high number of data by expressing ( )Cor T or ( )Var T as a spatial average (as in

Eq.4 or 8) , under the hypothesis of ergodicity, as mentioned above.

The main difference between both methods is due to the fact that we perform a local prediction, using only a

few surrounding data. This choice proceeds from the order n of the data covariance matrix S SC that has to be inverted.

This matrix tends to be ill conditioned as its order rises, which just ruins the prediction. Remember that the whole
dataset has typically one thousand points : gathering all the data in one single covariance matrix is not relevant. Now, as
regards a local prediction, note that the variogram has a fixed value : by definition,  (0) 0Var =  . If non-stationarity

disturbs the estimation of Var, its values for step lengths Τ  in the neighbourhood of 0 will be less influenced that its

values for largeΤ.  In contrast, (0)Cor  is equal to ²σ , the surface variance. Indeed,  non-stationarity badly impacts the

estimation of this parameter.

Predicting the increments δZ instead of Z is rather unusual in the field of applied Signal Processing such as
geostatistics. The idea was first applied by Mandelbrot 13 for interpolating fractals, whose variograms follow a power

law 2( ) HVar T T= . Due to the self-similarity of those random processes, their variance is not defined, so that only the

increments can be predicted. The fact that engineering surfaces (even polished ones) are fractal at a nanometric scale,
is another incentive for choosing this approach.

As a conclusion for this section, predicting Z with the a.c.f. or δZ with the variogram are equivalent if the

signal is stationary, but if not, predicting δZ is more robust.
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3 DETECTING AND CORRECTING ABERRANT DATA

Before performing the phase reconstruction, the predictive algorithm can be applied to the fringe peaks and valleys

data itself, in order to detect and discard aberrant data: The p.d.f. ( ) ( )|j i jY S Y S ≠ of  each data conditioned by some

of its closest neighbours is computed, providing confidence intervals (Fig. 5). If ( )jY S  lies out of the confidence

interval with a given confidence rate, the data is discarded. It is not necessary to replace it by its conditional expectation,
since this operation would add no information. The phase prediction will just compensate for this missing data.

Fig. 5 Testing each data vs its confidence interval conditioned by the surrounding data.

The following example shows a spot on an interferogram resulting in a crater on a bright fringe. The peaks of the crater
are detected as fringe data. If not corrected, a bad bump shows up on the phase (Fig. 6). The aberrant data algorithm
described above wipes off the defect (Fig. 7). This algorithm makes the phase reconstruction highly robust to noise.

  

Fig. 6 Typical example of aberrant fringe data on an interferogram.

Fig. 7 Detection and rejection of the aberrant data.
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4 REACHING LAMBDA/100 RESOLUTION

Indeed, the aberrant data correction algorithm helps dealing with very noisy interferograms. However, if we want
to tackle high precision and resolution, we certainly need high quality data. Fig. 8 (left) is a static fringes interferogram
of a part, measured on a carefully refurbished interferometer fitted with a gorgeous reference mirror.
After predicting the phase and subtracting its first Zernike components, the residuals on the 2D phase map show
evidence of the polishing process, namely Magneto-Rheological Finishing with its typical revolution grooves (Fig.

8, centre). Note the scale on the 3D graph (Fig. 8, right) : the central peak is about 7 nm high, i.e. λ/100 ptv. This value
does not stand for the measuring system resolution, it is the amplitude of the detected signal. The resolution is
necessarily an order of magnitude smaller, actually nanometric.

When reaching this level of accuracy, it is necessary to gather the best experimental conditions of low air
turbulence and solid vibrations, temperature stability... The need for tilting the wavefront is known to create aberrations,
mainly astigmatism, which may be solved by averaging two wavefronts with opposite tilts.

         

Fig. 8 Reconstructing the phase from a single static fringes interferogram:. λ/100 details are visible .

5 ESTIMATING CONFIDENCE INTERVALS FOR PARAMETERS OF INTEREST
Whatever accurate the reconstructed phase, the measuring process will miss its goal if the parameters of interest,

bounded by industrial specifications, are not carefully estimated. A current way of estimating a PV or a RMS is to
compute those of the reconstructed phase. However, provided we consider the phase only as estimation from an
underlying random function, we need to consider as well any parameter extracted from the wavefront as a random
variable. The expectation of the phase PV is not the PV of the phase expectation. A specification such as "The mirror
PV should be less than x nm" needs to be rephrased in stochastic terms: "According to the data acquired on the mirror,
what is the probability that its actual PV be greater than x nm ? " Or in other words, "What is the risk, whose estimation
will help the user make a decision on the part (accept or discard)?"

When a p.d.f. is available, it is common to perform a Monte-Carlo simulation 14 with any number of random trials,
consistent with this p.d.f. Namely, each trial will be one of the likely surfaces, reaching the data, and whose variogram

is that of the prediction. For example, we can  extract from each trial # k : max  ( ) -  min  ( ) k k k
X DX D

PV Y X Y X
∈∈

= and

build a histogram of these PV, for thousands of trails. The histogram converges towards the p.d.f. of the PV (Fig. 9).

Fig. 9 Estimating the p.d.f. of the PV by Monte-Carlo simulation performed on the predicted p.d.f. of Y.
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The next step uses this histogram to estimate the risk that the part PV be greater than a given specification
PVmax (Fig. 10).

Fig. 10 Using the estimated PV p.d.f. for risk evaluation :
What is the probability for the PV to be out of tolerance ?.

Note that the z precision of these estimates relies on the fringe spacing : the smaller the inter-site distance, the
smaller the conditional variance, the better the z precision. (Other approaches for extracting the wavefront RMS
variance -and FTM in a forthcoming paper- from the predicted p.d.f. are described in 15.)

But the lateral (x,y) resolution of the phase reconstruction is a different issue : For example, some laser
applications specify a PV of slopes averaged over an area d mm in diameter. Requiring a fringe spacing smaller than d,
or even a pixel resolution, seems a straightforward idea. In fact, the prediction takes into account the expected variations
of the wavefront at any step length, even tending towards zero. As a result, the lateral (x,y) resolution of these
estimations is not restricted by the sampling theorem : since the statistical properties of the predicted function are held in
the variogram, we do perform an actual statistical sub-fringe-spacing interpolation between the data.

Before concluding this paper, let us mention that these algorithms have also been adapted to wavefront reconstruction
from gradient data for Shack-Hartmann, moiré devices, or shearing interferometers. A space and time linear prediction
has been applied to optimising dynamic Adaptive Optics fitted with a Shack-Hartmann sensor 16.

6 CONCLUSION

Static fringes interferometry is a traditional and simple technique for measuring wavefront deformations.
Industrial shops are fitted with numerous interferometers, most of which having beautiful reference mirrors. Urged by
an ever increasing need in optical parts precision, the metrology of wavefronts has turned to phase-shifting devices,
believed be the only solution to grant the mythic "lambda/100 resolution".

Yet, a painstaking image and signal processing makes it possible to extract a maximum information from
a single interferogram. The linear (Bayesian) prediction of the wavefront provides an optimal reconstruction:
the expectation is the "most probable surface" with respect to the fringe data, with a "vertical" z resolution close to that
of a phase-shifting device. Applying a prediction to the data itself increases robustness by detecting and correcting
aberrant fringe data with a high reliability. Furthermore, by means of Monte-Carlo simulations, the whole predicted
p.d.f. yields confidence intervals of any parameter of interest, which is novel in this field. As regards estimating those
parameters, the stochastic interpolation between the fringe data provides a precision close to that of phase-shifting,
coupled with an effective "lateral" resolution (x,y) smaller than the fringe spacing.

As a conclusion, the method described in this paper can help upgrading interferometers at a significantly lower
cost than buying a new system. Besides, the metrology of large components for which air turbulence makes phase
shifting unstable, can also be enhanced by software based on linear prediction algorithms 17.

***
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